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A popular dynamic imaging technique, k–t BLAST (ktB) is studied here for fMR imaging. ktB utilizes cor-
relations in k-space and time, to reconstruct the image time series with only a fraction of the data. The
algorithm works by unwrapping the aliased Fourier conjugate space of k–t (y–f-space). The unwrapping
process utilizes the estimate of the true y–f-space, by acquiring densely sampled low k-space data. The
drawbacks of this method include separate training scan, blurred training estimates and aliased phase
maps.

The proposed changes are incorporation of phase information from the training map and using general-
ized-series-extrapolated training map. The proposed technique is compared with ktB on real fMRI data.
The proposed changes allow for ktB to operate at an acceleration factor of 6. Performance is evaluated
by comparing activation maps obtained using reconstructed images. An improvement of up to 10 dB is
observed in the PSNR of activation maps. Besides, a 10% reduction in RMSE is obtained over the entire
time series of fMRI images. Peak improvement of the proposed method over ktB is 35%, averaged over five
data sets.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Images with high spatial and temporal resolution are essential
in medical diagnosis in applications like dynamic contrast-en-
hanced MRI or functional MRI (fMRI), where dynamic events are
monitored. Today, fMRI has the potential to probe neurophysio-
logical activation in the brain at a much higher spatial resolution
than that offered by other non-invasive neuroimaging techniques
like PET. The high sensitivity measurement of ‘‘Blood Oxygenation
Level Dependent” (BOLD) signal modulation points to regions in
the cortex responsible for the underlying activity. Currently fMRI
applications interrogate neural activity changes only on the order
of seconds, although neural activity happens on time scales of
the order of milliseconds.

Methods that accelerate imaging speed typically suffer from
loss in SNR. But given the fact that the dynamic physiological
changes are successfully captured, they find application in imaging
non co-operative, pediatric and senior patients. They are also used
in breath-held scans where the already sick patient cannot be ex-
pected to remain still and hold his/her breath for long. In applica-
tions such as diffusion-weighted imaging which typically requires
scans of the order of minutes, such accelerated methods would be
ll rights reserved.
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very useful. In order to facilitate dynamic imaging, one needs to
determine the adequate temporal and spatial sampling rates,
which has been extensively researched in [2–4]. Enhancement
changes that occur in tumors due to contrast uptake, are continu-
ous and aperiodic functions, while dynamic events such as cardiac
activity and typical brain-study experiments are periodic or quasi-
periodic functions. The periodicity of the dynamic events leads to
discreteness in temporal frequency.

In the work reported in [5], the authors represented the contin-
uously changing object in a multi-dimensional, kx–ky–t-space, as a
function of spatial frequencies and a temporal variable. The Fourier
conjugate of this multi-dimensional space corresponds to x–y–f-
space, which is equivalent to the former in terms of energy, based
on Parseval’s theorem. The sparse energy distribution in x–y–f-
space, was explored to determine sampling schemes that could
effectively trade-off between spatial and temporal samples. The
work reported in [6] utilizes a generalized harmonic model for dy-
namic imaging of objects with periodic or quasi-periodic time vari-
ations. The approach converts the problem to one of parameter
identification. ‘‘UNaliasing by Fourier-encoding the Overlaps using
the temporal Dimension” (UNFOLD) was proposed by [7] in order
to speed-up acquisition exploiting the periodicity of the underlying
event. The method hinges on transfer of information from the k-
axes to the t-axis, making it sufficient to acquire a smaller but den-
ser k–t-space. UNFOLD involves a reduction of the dynamic FOV.
This FOV reduction diminishes the amount of spatial information
acquired along the k-axes of k–t-space. Because of aliasing,
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spatially distinct points within the object are overlapped at the
same spatial position in the images. UNFOLD uses time to label
the overlapped components, such that a Fourier transform through
time can resolve them. The authors present results on cardiac and
fMR imaging, illustrating significant reductions in the acquisition
time. More recently in [8], a method for dynamic imaging was pro-
posed and is called k–t BLAST. Both UNFOLD and k–t BLAST exploit
the sparseness in y–f-space for accelerated imaging, but differ in
their approach towards unaliasing. Unaliasing in UNFOLD involves
designing of separate filters about each of the peaks along tempo-
ral frequency. However, in k–t BLAST the approximate distribution
of signal in y-f-space should be known in order to unalias, and
hence additional training data needs to be acquired. In this paper,
we study k–t BLAST method and propose enhancements for im-
proved performance.

2. k–t BLAST

In [8], k–t BLAST (ktB) was proposed for reconstruction of dy-
namic images using regularly undersampled data acquisitions.
The correlations in both k-space and time are exploited for esti-
mating the unacquired data. A missing data point is estimated
based on other available points, within its vicinity in both k-space
and time. The advantage of this approach is that it exploits more of
the relevant correlations, thus improving the estimation of missing
data. This improvement could be used to obtain better recon-
structed images or achieve higher reduction in data acquisition
leading to better temporal resolution. Several variations of ktB have
been proposed to customize the image reconstruction algorithm
for applications such as angiography and cardiac imaging [9–11].

Dynamic MRI can be seen as acquisition of a changing k-space
signal at different time instants, which is essentially sampling in
a higher dimensional k–t-space. Here, k stands for multi-dimen-
sional k-space. Since we are dealing with 2D k-space, and it is
known that all points along the read-out (kx) dimension are avail-
able, we need to undersample only along phase-encode dimension
(ky). Hence, the mention of k-axis would refer to the actual ky-axis,
whose Fourier conjugate axis would be the spatial dimension y. For
the explanation that follows, please refer Fig. 1. The lattice along
which these points are acquired in k–t-space is referred to as the
k–t sampling pattern. The conjugate space obtained upon Fourier
transformation of the k–t-space is the y–f-space. It is observed that
the signal distribution in y–f-space is very sparse, especially for
Fig. 1. Knowing sampling pattern helps unaliasing the y-f space (Source: [8]).
fMRI with its temporal periodicity of activated pixels. This feature
can be used to pack y–f-space densely, allowing higher acceleration
factors. Under-sampling in k–t-space leads to an aliased signal dis-
tribution in y–f-space.

For instance, at a given location ðy0; f 0Þ in the aliased y–f-space
obtained from the sparsely acquired data, the signal value
qaliasðy0; f 0Þ is actually the sum of the values at ðy1; f 1Þ . . . ðyn; f nÞ
on the true y–f-space signal distribution. The locations
ðy1; f 1Þ . . . ðyn; f nÞ are determined by the k–t sampling pattern.

qaliasðy0; f 0Þ ¼ q1ðy1; f 1Þ þ � � � þ qnðyn; f nÞ ð1Þ

where n is the acceleration factor.
Unaliasing the aliased y–f signal distribution is possible because

the aliasing pattern is completely known, once the sampling pat-
tern is fixed. The set of under-determined system of equations gi-
ven by Eq. (1) needs to be solved for every set of aliased voxels.
Since infinite solutions exist, the most sensible way would be to
minimize a well-designed cost function. Here, weighted-minimum
norm solution is preferred. This solution makes use of prior infor-
mation, wherein a low frequency, alias-free signal distribution is
obtained by acquiring the low k-space frequencies, forming the
‘‘training map”. The values of the training map form the initial esti-
mates in order to obtain the solution given by,

q ¼M2 � 1Hð1 �M2 � 1HÞ�1 � qalias ð2Þ

where M2 ¼ diagðjm1j2; . . . ; jmnj2Þ , and jmij is the magnitude of the
training y–f map at the ith aliasing location. Here, 1 is the row vec-
tor of all 1s, at n positions. Note that the acquisition of the training
map data slightly reduces the speed-up effected by the under-sam-
pling pattern. However, the DC-value is separately taken care of,
since it is the most important component. The temporal average
of the sparse acquisitions forms the DC-value of the estimated y–f
map.

The new set of equations to be solved is given by,

q ¼ qþM2 � 1Hð1 �M2 � 1H þ wÞ�1 � ðqalias � 1qÞ ð3Þ

where q is the baseline estimate (DC-component) and w is the noise
variance.

It should be noted that the paradigm frequency decides the har-
monics at which the temporal frequency is populated and in turn,
the available sparseness in the y–f-space. The appearance of the
PSF peaks depends on the acceleration factor used. Hence the
achievable acceleration factor is governed by the paradigm fre-
quency. An acceptable acceleration factor would be one, where
each of the aliased PSF peaks appears such that the overlap be-
tween the PSFs occurs where the signal levels are very low.

3. Improvements proposed

Two novel changes have been proposed for improving the per-
formance of ktB. They are:

� Improved training map using generalised series extrapolation.
� Phase constraints from the training data.

The emphasis is on obtaining the unaliased map by integrating
the magnitude component from the k–t BLAST algorithm and the
phase component from the training data, as shown in Fig. 2. Sev-
eral works [9–11] that have explored the utility of k–t BLAST for
angiography and cardiac imaging have also proposed variations
to the sampling scheme. For instance, in [10], the authors have pro-
posed dense sampling in an elliptic region around the center of the
k-space, while in [11], the authors use sliding window reconstruc-
tion of the undersampled data. Here we utilize the variable-density
sampling scheme proposed in [9].
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3.1. Data acquisition

In the original ktB scheme [8], the training and actual data are
acquired at disjoint instants of time, and follow different sampling
schemes. The training data contains only the low k-space frequen-
cies, while the actual data acquisition is along a pre-designed spar-
sely sampled lattice, as shown in Fig. 3a. A variation of data
acquisition scheme that couples both the training and actual scans
is shown in Fig. 3b. This is a variable-density sampling lattice. This
scheme minimizes the mis-registration between the training and
data scans. This scheme of acquisition reduces the acceleration fac-
tor achievable, but eliminates possible artifacts due to mis-regis-
tration. In the experiments reported here, this variable-density
sampling scheme has been utilized. A similar data acquisition
scheme was reported by Xu et al. [12], where full ky data was ac-
quired at the first and last time frames, whereas only low ky for
all the time frames in between. However, in the work proposed
here, full ky data is not acquired in the last time frame, thus reduc-
ing the data acquisition time. The data acquisition scheme fol-
lowed in the proposed work is shown in Fig. 3c.
Fig. 3. Data acquisition schemes (X-axis – time frame, Y-axis – acquired Phase encodes).
static data at the first time frame followed by variable-density sampling scheme (utilize
3.2. Training map

Hansen et al. [13] report how the quality of training data influ-
ences the working of ktB, in contexts where training and actual
data are acquired at disjoint instants of time. They report that
increasing the number of time frames of acquisition of training
data decreases the reconstruction error negligibly. They also report
that filtering of the training data in order to reduce truncation arti-
facts has minor impact on reconstruction errors.

However, in a variable-density acquisition scheme, training
data is available at all the time frames of the experiment. We ex-
plored the impact of including higher frequencies in the training
data, on the working of ktB. We compared ktB reconstructions that
use low k-space frequencies in the training data against those that
use all the k-space frequencies (ideal training data). It is seen that
the errors can be brought down by a factor of 2, using higher fre-
quencies in the training map. The disparity in the quality of two
image reconstructions led us to explore the possibility of obtaining
an improved-resolution training map using the acquired low k-
space frequencies. It must be observed that at locations in the ali-
ased y–f-space, where the signal is dominated by noise, the values
from the training map (that are chosen as estimates), can lead to
meaningful results only if the estimate is close to the truth.

The proposed method generates an improved-resolution train-
ing map, despite acquiring only the lower spatial frequencies. This
is achieved by extrapolation using the generalized series model,
which requires one full-resolution acquisition. A static image was
obtained at the start of the experiment in each of the cases, to serve
as the full spatial resolution reference image This high-resolution
static acquisition serves to estimate the missing high-frequencies
in the training map. The working of the generalized series model-
ing is outlined below.
3.2.1. Generalized series modeling
In generalized series modeling, the missing high spatial fre-

quencies are split into two components as follows:

dGSðkÞ ¼ dcðkÞ þ
X

m

cmdcðk�m � DkÞ ð4Þ

where dGS is the generalized series estimate, dc is the Fourier trans-
form of the static image, cm are the generalized series coefficients
and Dk refers to the spatial-frequency resolution. The first part
comes from the apriori static information, whereas the second part
comes by adaptively adjusting the coefficients so that data consis-
tency is maintained. We implemented a fast version of this algo-
rithm outlined in [14]. After this extrapolation, it follows that the
deviation of the training data from the ideal, full k-space training
data decreases. We expect better training data to translate to better
training maps in y–f-space.
(a) Uniform density (used in ktB). (b) Variable density sampling. (c) Full-resolution
d in the proposed work).
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In the work reported by Xu et al. [12] also the training data is
RIGR-reconstructed before being utilized. The solution proposed
by Xu et al. is given as

q ¼ qRIGR þ ESHðSESH þ wÞ�1ða� SqRIGRÞ ð5Þ

where q is a vector of unaliased image spectrum intensities, qRIGR is
a vector of RIGR image spectrum intensities, a is a vector of sensitiv-
ity-weighted aliased intensities, S is the sensitivity matrix, w is the
noise correlation matrix, and E is the training map. The authors uti-
lize the RIGR-extrapolated data qRIGR as the DC-term. The approach
proposed by Xu et al. aimed at obtaining a reliable estimate for the
DC term of the y–f map, rather than use the temporal average as the
regularization term as originally proposed in k–t BLAST [8]. This ap-
proach utilizes generalized series modelling to estimate the DC
term. As is well-known, the DC term is most important since it con-
tains maximum energy. The image-adaptive regularization for
every time frame leads to improved performance. Hence this ap-
proach would be very useful in scenarios where the acquired data
is noisy, reducing the occurrence of image artifacts.

However, in the current work, an improved estimate of the
training map is obtained using generalized series modelling. This
allows higher achievable acceleration factors since the process of
unaliasing is given reliable initial values. The approach attempts
to obtain unaliased estimates for all frequencies. Hence this ap-
proach would be useful in imaging fine structures and phenomena
where multiple temporal frequencies are involved, as in brain
imaging, where higher frequencies also play an important role.

3.3. Phase constraints

The second change proposed is the incorporation of phase con-
straints from the training map. The training map, though not of
best possible resolution, does contain unaliased signal distribu-
tions. In Eq. (3), as given in the original k–t BLAST proposition,
the phase of the aliased y–f map is used, which would be errone-
ous. Hence, we use the phase information of the training map in
estimating the true y–f map.

H ¼ \qtrain ð6Þ
~q ¼ jqj expðiHÞ ð7Þ

where ~q is the final estimate of the signal distribution in y–f plane
and qtrain is the training map.

Phase maps are typically smooth and are generally estimated
using lower frequencies. Hence the unaliased phase of the y–f
map obtained using low k-space acquisitions is in accordance with
the procedure used to obtain phase maps. The approach proposed
by Xu et al. does not address the issue of aliased phase maps. Ali-
ased phase maps might lead to artifacts restricting the achievable
maximum acceleration factor.

4. Experiments and results

4.1. Data utilized for the study

fMRI data is obtained on a 3T scanner for 5 volunteers, for
experiments with ‘‘visual stimulus”. In the course of the experi-
ment, 3 two-dimensional T�2-weighted images, each with 64 scans,
are acquired using a gradient-echo FLASH sequence (TE/TR 40 ms/
80.5 ms, matrix size of 128 � 64; The image matrices are zero-
filled to obtain 128 � 128 images with a spatial resolution of
1.953 � 1.953 mm; slice thickness = 5-mm and 2-mm gap). The
corresponding two-dimensional anatomical slices are also ac-
quired with a T1-weighted IR RARE sequence (TI = 900 ms; TE/TR
40 ms/3900 ms, matrix size = 512 � 512) in the same experimental
session. In all the experiments, ON and OFF stimuli are presented
with a duration of 5.162 s/sample. Each stimulation period had
four successive stimulation ON states followed by four OFF states.
The stimulations are repeated for eight cycles (total duration of the
experiment is 5.5 mins.). The experiments are carried out at differ-
ent sessions with different subjects. The visual stimulation task
comprised an 8-Hz alternating checkerboard pattern with a central
fixation point projected on a LCD system. The subjects are asked to
fixate on the point during stimulations. Images are acquired at
three axial levels of the brain at the visual cortex.
4.2. Performance evaluation

fMRI images are mainly studied for the activation maps, which
interpret the information contained in the entire time series of
images. Hence, to evaluate the reconstruction performance, we
compare the activation maps obtained against the reference activa-
tion map. Statistical Parametric Mapping (SPM2) is the most
widely used method for fMRI time series analysis [15]. The primary
objective is to detect activated voxels and the resulting statistical
parametric maps represent the activation strength of each voxel.
The scale of the activation-strength obtained is important, since
the activation maps are eventually thresholded to obtain the truly
activated regions. Hence, when drastic changes in the scales of
activation-strength are observed, the activation maps are consid-
ered degraded. Root mean square error (RMSE), correlation with
reference, and mean activation level of the activation maps are
the performance metrics used to quantify the degradation in acti-
vation. If we analyze the true image time series A and the recon-
structed series B, using same SPM method and parameters, we
expect comparable scales in activation strength at similar locations
in the resulting statistical parametric maps SA and SB.

fMRI time series are first realigned to remove movement effects
using least-squares minimization [15] and then smoothed using
3D Gaussian kernel with full width at half maximum
(FWHM) = 4.47 mm, to decrease spatial noise. Canonical hemody-
namic response function (HRF) plus time and dispersion deriva-
tives are used as basis function and changes in BOLD signal
associated with the task are assessed on a pixel-by-pixel basis,
using the general linear model and the theory of Gaussian fields
as implemented in SPM2. This method takes advantage of multi-
variate regression analysis and corrects for temporal and spatial
autocorrelations in the fMRI data. Those voxels in the statistical
parametric map are identified as activated, that satisfy p 6 0.05,
on carrying out an F-test.
4.3. Experimental results

MATLAB is used for all simulations. For the trials reported, the
training and the actual acquisitions are generated from the full k-
space, by using appropriate under-sampling masks.

The unaliased training as well as aliased sparse y–f maps are
shown in Fig. 4a and b, respectively. As claimed earlier, it can be
seen that the signal distribution in y–f-space is very compact, thus
leading to possibilities of achieving higher acceleration factors. In
Fig. 5a, the deviation of the training data from the ideal training
data is shown for 2 cases. In the first case, the training data is sim-
ply zero-padded as in the baseline ktB, whereas in the second case,
the obtained low k-space frequencies are RIGR-extrapolated.
Clearly, the RIGR-extrapolated data is seen to be closer to the ideal
training data. In Fig. 5b, we compare how the gains of Fig. 5a trans-
late to the y–f-space. It can be observed that the RIGR-extrapolated
training map is close to the training map that would have been
generated had all the frequencies been available for training (ideal
training data) and is more accurate than the zero-padded map that
the ktB algorithm uses.



Fig. 4. Typical y–f maps obtained from k-space data acquired with an acceleration factor of 5 using: (a) Densely sampled low k-space (training data). (b) Undersampled full k-
space (actual data).

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

tra
in

in
g 

kx
−k

y 
er

ro
r

Time frame

Zeropadded

RIGR−Extrapolated

20 40 60 80 100 120

0.1

0.15

0.2

0.25

0.3

spatial dimension x

tra
in

in
g 

y−
f p

la
ne

 e
rro

r

Zeropadded
RIGR−
Extrapolated

Fig. 5. Performance comparison for acceleration factor of 5: (a) Normalized error in
training k-space data with respect to the ideal training data. (b) Normalized error in
y–f training map.

20 40 60 80 100 120

0.1

0.15

0.2

0.25

0.3

spatial dimension x

re
co

n 
y−

f p
la

ne
 e

rro
r

ktB−PR

ktB

ktB−ideal training

0 10 20 30 40 50
0.03

0.04

0.05

0.06

0.07

0.08

0.09

Time Frame

Im
ag

e 
Er

ro
r (

R
M

SE
)

ktB−PR

ktB

ktB−ideal training

Fig. 6. Normalized reconstruction errors for an acceleration factor of 5: (a)
Normalized error in reconstructed y–f map. (b) Normalized RMSE of the recon-
structed image time series.

N. Sinha et al. / Journal of Magnetic Resonance 204 (2010) 273–280 277
In Fig. 6a, we see errors in the reconstructed y–f plane as com-
pared to the true y–f plane. The three cases compared are: the
training map being ideal (ktB with ideal training data), zero-pad-
ded (ktB) and the method proposed here (ktB-PR). It can be seen
that the proposed case results in lower errors compared to the
zero-padded case, consistently for all the instants of the time ser-
ies. Fig. 6b shows the normalized RMSE of the reconstructed image
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time series for all the three cases outlined above. It can be seen that
the proposed case and the ideal training map case, are comparable,
while both consistently outperform the baseline ktB reconstruc-
tion. It can be observed that the reconstruction with ideal training
data is not the best at all time instants. This is because the avail-
ability of the entire k-space for generation of the training map im-
Fig. 8. Thresholded activation maps obtained using SPM for acceleration factor 5, with th

Fig. 9. (a) Sample fMR image from a time series of images. (b) Corresponding ktB recon
error.
plies that in Eq. (3), the best estimate for M is obtained. However,
the phase of q still remains aliased. Hence even though the best
estimate for M is available, the final reconstruction suffers due to
the aliased phase.

The importance of obtaining unaliased phase is illustrated
with a simple example. For an acceleration factor of 2, the result-
ing aliased signal value c comes from the overlap of unaliased
values a and b; thus c = a + b. If one of the two contributing unali-
ased magnitudes is dominant and the other is noise, then unalias-
ing is efficient. But if the two contributing magnitudes are
comparable and phases very dissimilar, then the process of unali-
asing suffers.

Fig. 7 shows the decline in the correlation between the obtained
activation map and the reference map as a function of the acceler-
ation factor. In Fig. 8, we observe the activation maps obtained
using the two methods, for a gain of factor 5 in temporal resolu-
tion. Clearly, the map obtained using the proposed method dis-
plays less artifacts than the one reconstructed using baseline ktB.
We also observe that the gain in PSNR goes up to 10 dB. The RMSE
of the fMRI time series reduces by about 10% averaged over all the
time points, with a peak improvement of 35% compared to the
baseline ktB for acceleration factors up to 6. For an acceleration fac-
tor of 6, we notice that the scales of activation maps obtained using
the baseline ktB are lower by a factor more than 10, and hence, it is
not possible to threshold them to see activated regions. On the
other hand, ktB-PR results in activation maps that are lower by a
factor 2 and hence activated regions can be seen even at lower
thresholds. At accelerations above 6, we notice significant degrada-
tion in the strength of the activation maps, and hence do not con-
sider them.
e image time series reconstructed using: (a) original images, (b) ktB-PR, and (c) ktB.

struction (color scale for all images: 0–255). Arrows indicate regions of significant



Fig. 10. Comparison of reconstruction performance for the image in Fig. 9. Error
image for ktB with (a) Regular training data. (b) Ideal training data (color scale for
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5. Discussion

The image shown in Fig. 9a is a sample from the chosen fMR
time series. Applying the ktB algorithm, we obtain the reconstruc-
tion shown in Fig. 9b. Although the two images look perceptibly
similar, small intensity differences can be seen on close inspection
as in the area pointed to by the arrows. The corresponding error
image is shown in Fig. 10a. Now, the same image is reconstructed
with a change in the training data set. We assume the ideal case,
where all possible training data is available (ideal training data).
The error image for the reconstruction obtained in this case is
shown in Fig. 10b.

We have also carried out trials where only one of the two pro-
posed changes are made to the existing algorithm. We compare the
results (image reconstructions) of each of the following cases:
Fig. 11. Reconstruction performance of the proposed improvements on the image
shown in Fig. 9a. Error images using ktB with: (a) Only phase constraints. (b) Only
RIGR-extrapolated training map. (c) Variations utilized in both (a) and (b) (color
scale for all images : 0–14). Arrows indicate regions of significant error.
� Only phase constraints are imposed (ktB-Ph).
� Only generalized-series-extrapolated training map (ktB-RIGR).
� Both the above variations incorporated (ktB-PR).

It is observed that incorporating both the changes leads to bet-
ter reconstruction than that of the baseline ktB, as seen from the
error images shown in Fig. 11. The plots in Fig.12 show the RMSE
obtained for an entire image time series using each of the varia-
tions of ktB discussed in this paper: ktB, ktB with phase constraints
and no RIGR-extrapolated training map, ktB with RIGR-extrapo-
lated training map and no phase constraints and finally ktB with
both the improvements included. It is observed that ktB-PR (ktB
along with the proposed variations) results in the least RMSE for
the image time series reconstruction.

6. Conclusion

In this paper, we have proposed an improved version of the
existing dynamic imaging technique ktB. A variable-density data
acquisition scheme has been utilized, in order to avoid a separate
training scan. The generalized-series extrapolated training map is
used to serve as an estimate of the true signal distribution in place
of the zero-padded training map. Besides, the final solution makes
use of the phase constraints from the training map, rather than
from the aliased training map. The phase assignment in the origi-
nal ktB is a major source of error. Thus addressing this limitation
leads to improved performance. All of the above enhancements
are incorporated into the algorithm and applied to real data. Re-
sults on fMRI data have shown that these enhancements together
lead to improved reconstructions and acceleration factors of up
to 6. The reconstruction performance is evaluated using activation
maps obtained. We observe an improvement of up to 10 dB in the
PSNR of activation maps. The proposed technique results in more
accurate activation maps and also the image time series incurs
mean RMSE of less than 10% averaged over the entire time series,
for acceleration factors of up to 6.
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